
WAVE OPTICS
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INTRODUCTION: In this chapter, we deal with wave optics or physical optics. The study of
interference, diffraction, and polarization of light cannot be adequately explained with the
ray optics used in explaining reflection and refraction through mirrors and lenses. We now learn how
treating light as waves rather than as rays leads to a satisfying description of such phenomena.In ray
optics or geometric optics, we used light rays to examine what happens when light passes through
a lens or reflects from a mirror,here we use light waves to understand interference, diffraction,
and polarization of light.
WAVEFRONT:A locus of points, which oscillate in phase is called a wavefront.

• A wavefront is also defined as a surface of constant phase.

• The speed with which the wavefront moves outwards from the source is called the speed of
the wave.

• The energy of the wave travels in a direction perpendicular to the wavefront.

Types of wave fronts:-

1. Spherical wave front:If we have a point source emitting waves uniformly in all directions,
then the locus of points which have the same amplitude and vibrate in the same phase are
spheres and we have what is known as a spherical wave as shown in Fig.1.

Figure 1: A spherical wave front from apoint source -Note the rays are perpendicular to the wave
front’s surface
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2. Plane Wave front: When the light source is st a large distance, a small portion of the sphere
can be considered as a plane and we have what is known as a plane wave [Fig. 2].

Figure 2: Plane wave front-Note the rays are perpendicular again

Dutch physicist and astronomer Christian Huygens showed that a wave theory of light could explain
reflection, refraction and Interference/Diffraction .
Huygens principle is a geometric construction for using knowledge of an earlier wave
front to determine the position of a new wave front at some instant.

HUYGEN’S PRINCIPLE:The Huygens principle states that all points on a given
wave front are taken as point sources for the production of spherical secondary waves,
called wavelets, which propagate outward through a medium with speeds characteris-
tic of waves in that medium. After some time interval has passed, the new position
of the wave front is the surface tangent to the wavelets.
USING THE HUYGENS PRINCIPLE TO PREDICT THE POSITION OF THE
WAVEFRONT AFTER A TIME τ
Consider a plane wave moving through free space, as shown in Figure 3a. At t = 0, the wave front
is indicated by the plane labeled AA′. In Huygenss construction,each point on this wave front is
considered a point source. For clarity, only three points on AA′ are shown. With these points as
sources for the wavelets, we draw circles,each of radius cτ , where c is the speed of light in vacuum
and τ is some time interval during which the wave propagates. The surface drawn tangent to these
wavelets is the plane BB′, which is the wave front at a later time, and is parallel to AA′. In a
similar manner, Figure 3b shows Huygenss construction for a spherical wave.

Figure 3: Huygenss construction for (a) a plane wave propagating to the right and (b) a spherical
wave propagating to the right.
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HUYGENS’S PRINCIPLE APPLIED TO REFRACTION:
The Huygens principle can be used to derive the laws of refraction. In the Diagram below

• PP ′ is the the surface separating medium 1(refractive index n1) and medium 2 (refractive
index n2).

• v1 and v2 (v1 > v2) are the speed of light in medium 1 and medium 2,respectively.

• AB is the incident plane wave front propagating in the direction A′A.Note the rays are per-
pendicular to the wave front.

• i and r are the angles of incidence and refraction.

• τ is the time taken by the wavefront to travel the distance BC.

The incident wave front is AB. To find the refracted wavefront, we draw a sphere of radius v2τ from
the point A in the second medium (the speed of the wave in the second medium is v2). CE is a
tangent plane drawn from the point C on to the sphere.Thus as per Huygens principle (CE) is the
refracted wavefront.

Figure 4: Huygens’s construction for proving Snells law of refraction. At the instant that ray A′A
strikes the surface, it sends out a Huygens wavelet from A and ray BC sends out a Huygens wavelet
from B. The two wavelets have different radii because they travel in different media.

BC = v1τ

AE = v2τ

Consider the triangles ABC and AEC,
in 4ABC

sin i =
BC

AC
=
v1τ

AC
(1)

in 4AEC

sin r =
AE

AC
=
v2τ

AC
(2)
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where i and r are the angles of incidence and refraction, respectively. dividing the above two
equations we get

sin i

sin r
=
v1
v2

(3)

We know that the refractive index of medium 1(n1) and medium 2(n2) is given by

n1 =
c

v1
or v1 =

c

n1

n2 =
c

v2
or v2 =

c

n2

using v1 and v2 from the above two equations in Eqan. (3) we get the Snell’s Law

sin i

sin r
=
n2

n1

(4)

Relation Between speed(v),wavelength(λ) and frequency(ν) of the light wave If λ1 and
λ2 are the wavelengths of light in medium 1 and medium 2 respectively and if the distance BC is
equal to λ1 and the distance AE equal to λ2 then,

λ1
λ2

=
BC

AE
=
v1
v2

The above equation implies that when a wave gets refracted into a denser medium
(v1 > v2) the wavelength and the speed of propagation decrease but the frequency
ν(= v/λ) remains the same.
Refraction at a rarer medium
When light passes from denser medium to rarer medium the Huygens’s construction of the refracted
wavefront is shown below:- To derive the Snell’s law proceed as above.

Figure 5: Refraction of a plane wave incident on a rarer medium for which v2 > v1. The plane wave
bends away from the normal.

LAWS OF REFLECTION USING HUYGEN’S PRINCIPLE
The Laws of reflection(i = r) can be derived by using the Huygens’s Principle.
In the above geometrical construction:-

• AB is a plane wavefront incident at an angle i on a reflecting surface MN .

• v is the speed of the wave in the medium.
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Figure 6: Reflection of a plane wave AB by the reflecting surface MN.AB and CE represent incident
and reflected wavefronts.

• τ is the time taken by the wavefront to advance from the point B to C then the distance BC.

BC = vτ

To construct the reflected wavefront we draw a sphere of radius vτ from the point A as shown
in Fig.6. Let CE represent the tangent plane drawn from the point C to this sphere.Thus as per
Huygens’s principle CE forms the reflected wave front. Thus

AE = BC = vτ

If we now consider the 4EAC and 4BAC we find that they are congruent (use the Right angle
Hypotenuse Side (RHS)test of congruency). (Redrawn separately in Fig.7) and therefore, the angles
i and r would be equal.

i = r

This is the law of reflection.

Figure 7: The congruent triangles.Note:AE = BC
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Wavefronts formed due to refraction/reflection through Lenses,Prisms and Mirrors

Figure 8: Refraction of a plane wave by (a) a thin prism, (b) a convex lens. (c) Reflection of a
plane wave by a concave mirror.

THE DOPPLER EFFECT:
Doppler effect is the change in frequency perceived by the observer when the source
of light is moving away or toward’s the observer.

If there is no medium and the source moves away from the observer, then later wavefronts
have to travel a greater distance to reach the observer and hence take a longer time. The time
taken between the arrival of two successive wavefronts is hence longer at the observer than it is at
the source. Thus, when the source moves away from the observer the frequency as measured by
the source will be smaller(remember f = 1

T
) and the wave length will be longer.The increase in

wavelength due to Doppler effect as red shift since a wavelength in the middle of the visible region
of the spectrum moves toward’s the red end of the spectrum.

Similarly when waves are received from a source moving toward’s the observer, there is an
apparent decrease in wavelength(or increase in frequency), this is referred to as blue shift .

The fractional change in frequency is given

∆ν

ν
= −vradial

c
(5)

∆ν is the change in frequency.
vradial is the component of the source velocity along the line joining the observer to the source
relative to the observer.
Sign Convention:a positive value is substituted for vradial when the source moves toward the
observer and a negative value is substituted when the source moves away from the observer. [A
convenient rule concerning signs for you to remember when working with all Doppler-effect problems
is as follows: The word toward is associated with an increase in observed frequency. The words away
from are associated with a decrease in observed frequency.]
INTERFERENCE
The phenomenon of non uniform distribution of energy(bright and dark) in a medium due to
superposition of waves is called interference
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Constructive Interference:When the crest and crest,trough and trough two waves then con-
structive interference takes place. In constructive interference, the amplitude of the resultant wave
at a given position or time is greater than that of either individual wave.[ref fig.9]

Figure 9: (a) Constructive interference occurs at point P when the waves combine.(b) Constructive
interference also occurs at point Q.

Destructive Interference:When the crest and the trough of two waves meet the destructive in-
terference takes place.in destructive interference, the resultant amplitude is less than that of either
individual wave(if the amplitudes of the waves are the same then the amplitude of the resultant the
waves is 0).

Figure 10: Destructive interference-note crest and trough meet

Coherence:Two waves are said to be coherent when the phase difference between the waves
remains a constant.
Conditions for sustained Interference:In order to observe interference in light waves, the fol-
lowing conditions must be met:

• The sources must be coherent i.e, they must maintain a constant phase with respect to each
other.

• The sources should be monochromatic i.e, of a single wavelength.

Why two Independent sources of light cannot produce Interference Bands?:If two light
bulbs are placed side by side, no interference effects are observed because the light waves from
one bulb are emitted independently of those from the other bulb. The emissions from the two light
bulbs do not maintain a constant phase relationship with each other over time. Light waves from an
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ordinary source such as a light bulb undergo random phase changes in time inter intervals less than
a nanosecond. Therefore, the conditions for constructive inter interference or destructive interfer-
ence maintained only for such short time inter intervals. Because the eye cannot follow such rapid
changes, no inter interference effects are observed. Such light. sources are said to be incoherent.
Why Interference takes place?
Interference in light waves from two sources was first demonstrated by Thomas Young. A schematic
diagram of the apparatus that Young used is shown in Figure 11 . Plane light waves arrive at a
barrier that contains two parallel slits S1 and S2. These two slits serve as a pair of coherent light
sources because waves emerging from them originate from the same wave front and therefore main-
tain a constant phase relationship. The light from S1 and S2 produces on a viewing screen a visible
pattern of bright and dark parallel bands called fringes (Fig. 12). When the light from S1 and
that from S2 both arrive at a point on the screen such that constructive interference occurs at that
location, a bright fringe appears. When the light from the two slits combines destructively at any
location on the screen, a dark fringe results.

Figure 11: Schematic diagram of Youngs double-slit experiment. Slits S1 and S2 behave as coherent
sources of light waves that produce an interference pattern on the viewing screen

Figure 12: A photograph of interference bands
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Derivation of the the condition for Dark bands and bright bands in terms of phase
difference and path difference

Let y1 be the displacement of the wave from the slit S1 and let y2 be the displacement of the
wave from the slitS2 and let φ be the phase difference between the two waves at an arbitrary
point P then

y1 = a cosωt

y2 = a cos(ωt+ φ)

and the resultant displacement will be given by

y = y1 + y2

y = y1 + y2 = a[cosωt+ cos(ωt+ φ)] (6)

using the trigonometric identity

cosA+ cosB = 2 cos
(A+B)

2
. cos

(A−B)

2

we get(remember cos(−φ
2
) = cos(φ

2
)

y = 2a cos(
(2ωt+ φ)

2
) cos

φ

2
= 2a cos

φ

2

(
cos(ωt+

φ

2
)

)
(7)

y = 2a cos
φ

2

(
cos(ωt+

φ

2
)

)
(8)

The above equation [eqn.(8)] is the new wave which is the resultant of the superposition of two waves
from the slits S1 and S2.The amplitude of the new wave thus formed is a cos φ

2
squaring

this we get the intensity of the new wave
The intensity at the point P is the square of the amplitude hence

I = 4a2cos2
(
φ

2

)
(9)

that is if
φ = 0,±2π,±4π,±6π.... (10)

then the intensity at the point P is maximum(check this by substituting in eqn.(9)) in general if

φ = ±2nπ, n = 0, 1, 2, 3... (11)

Then the point P is bright or constructive interference takes place.
Similarly if the phase difference

φ = 0,±π,±3π,±5π,±7π.... (12)

then the intensity at the point P is minimum(check this by substituting in eqn.(9)) in general if

φ = ±(2n+ 1)π, n = 0, 1, 2, 3... (13)

Then the point P is dark or destructive interference takes place. Equations (11) and (13) are the
condition for the point P to be bright are dark in terms of phase difference.These
conditions can also be expressed in terms of the path difference which is done below
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PATH DIFFERENCE:The difference in distance travelled by the waves from the slits S1 and
S2 is called path difference.For example the path difference in the diagram below [fig.13]is given by

pathDifference = S1R− S2R

Figure 13: The Path difference is given by S1R− S2R

We know that a phase difference of 2π radians corresponds to a wavelength of λ m as shown in
the diagram below:- Hence, if the

Figure 14: 2π radians corresponds to λ m

Path difference = 0,±λ,±2λ,±3λ,±4λ....

(to get the above equation in terms of path difference just substitute π
2

as λ in eqn.(10) In general
the point P will be bright if the path difference is:

Path Difference = nλ n = 0, 1, 2, 3, 4.... (14)

The above Equation gives the condition for Bright bands in terms of path difference.

Similarly, if the

Path difference = 0,±λ
2
,±3λ

2
,
5λ

2
,±7λ

2
....
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(to get the above equation in terms of path difference just substitute π
2

as λ in eqn.(12) In general
the point P will be bright if the path difference is:

Path Difference = (2n+ 1)
λ

2
, n = 0, 1, 2, 3, 4... (15)

The above Equation gives the condition for Dark bands in terms of path difference.
NOTE:Here n represents the order of the bands for example the fifth bright/dark band from the
central maxima has an order n = 5
Why Incoherent Light sources Do not Produce Interference Bands:

If the two sources are coherent then the phase difference P at any point will not change with
time and we will have a stable interference pattern; i.e., the positions of maxima and minima will
not change with time. However, if the two sources do not maintain a constant phase difference,
then the interference pattern will also change with time and, if the phase difference changes very
rapidly with time, the positions of maxima and minima will also vary rapidly with time and we will
see a time-averaged intensity distribution. When this happens, we will observe an average intensity
that will be given by:

< I >= 4a2 < cos2(φ/2) >

since < cos2(φ/2 >= 1/2 The intensity remains constant at 2a2 at all points.
When the phase difference between the two vibrating sources changes rapidly with

time, we say that the two sources are incoherent and when this happens the intensities
just add up. This is why when 2 separate light sources illuminate a wall we see the intensities just
get added up and no interference bands are formed .
INTERFERENCE OF LIGHT WAVES IN YOUNGS DOUBLE SLIT EXPERIMENT
The Young’s Double Slit Experiment:Consider two slits S1 and S2 separated by a very small
distance d on an opaque screen.The Slits are illuminated by a monochromatic light source S (like a
sodium vapour lamp).GG′ is a screen placed at a distance D to catch the interference bands.Since
there is only one source which illuminates both the slits,light waves spread out from S and fall on
both S1 and S2.S1 and S2 then behave like two coherent sources because light waves coming out from
S1 and S2 are derived from the same original source and any abrupt phase change in S will manifest
in exactly similar phase changes in the light coming out from S1 and S2.Thus, the two sources S1

and S2 will be locked in phase; i.e., they will be coherent.The schematic representation is given
below. The positions of maximum and minimum intensities on the screen GG′can be calculated by

Figure 15: Youngs Double slit Experiment schematic representation
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using the conditions for bright bands and dark bands [eqn’s (14)and (15)]

path difference = S2P − S1P

From the 4S1PQ

S1P
2 = D2 + (x− d

2
)2 (16)

From the 4S2PR

S2P
2 = D2 + (x+

d

2
)2 (17)

Note: S1Q = S2R = D

S2P
2 − S1P

2 =

(
D2 + (x+

d

2
)2
)
−
(
D2 + (x− d

2
)2
)

Expanding and simplifying we get

S2P
2 − S1P

2 = (S2P + S1P )(S2P − S1P ) = 2xd

From the above equation the Path Difference(S2P − S1P ) is given by

Path Difference =
2xd

(S2P + S1P )

If x and d << D then negligible error will be introduced if (S2P + S1P ) (in the denominator) is
replaced by 2D.
Hence after the approximation the path difference is given by

Path Difference =
2xd

2D
=
xd

D
(18)

The condition for bright and dark bands is given by eqns. (14)and (15)] Using these conditions If
the path difference given by (18) at the point P is related as

Path Difference =
xd

D
= nλ (19)

then the point P is Bright.
If the path difference at P is given by

Path Difference =
xd

D
= (2n+ 1)

λ

2
(20)

Then the Point P will be dark.
If P is Bright and if the order of the band at P is n then the distance of the nth Bright band

from the central Maxima(O) can be found from (19)as

xn =
nλD

d
n = 0,±1,±2,±3,±4 (21)

Similarly if P is Dark and if the order of the band at P is n, then the distance of the nth Dark
band from the central Maxima(O) can be found from (20)as

xn = (n+
1

2
)
λD

d
n = 0,±1,±2,±3,±4 (22)

12



Fringe Width(or Band width)(β):The distance between two consecutive bright and dark fringes
or bands is called fringe width or band width (β).The expression for the fringe width or band
width is given by

β = xn+1 − xn
Using (19) or (20) and using n = n in xn and n = n+ 1 in xn+1 , we get

β =
λD

d
(23)

The equation shows that all the bands formed are of same width and the fringe width
for the dark and the bright bands are the same(check it out!).
NOTE ABOUT CENTRAL MAXIMA:The point O in the screen will always be a bright band
because the path difference will be 0 and the waves from s1 and S2 will reinforce each other and
constructive interference will take place.The order of the central maxima is taken as n = 0.
Angular width of the interference bands
The angular width is given by

tanθ ≈ θ =
β

D
=
λD

dD
=
λ

d
What will happen if the source S is shifted UP or DOWN? In the double-slit experiment

Figure 16: Shift of the central Maxima When the source is shifted

shown in Fig.15, we have taken the source hole S on the perpendicular bisector of the two slits,
which is shown as the line SO. If the source S is slightly away from the perpendicular bisector i.e
the source is moved to some new point S ′ and suppose that Q is the mid-point of S1 and S2,the
angle S ′QS is φ, then the central bright fringe occurs at an angle −φ on the other side. Thus,
if the source S is on the perpendicular bisector, then the central fringe occurs at O, also on the
perpendicular bisector. If S is shifted by an angle φ to point S ′[ref fig.16], then the central fringe
appears at a point O′ at an angle −φ, which means that it is shifted by the same angle on the other
side of the bisector. This also means that the source S ′, the mid-point Q and the point
O′ of the central fringe are in a straight line.
NOTE:The path lengths S ′S1O

′ will be equal to S ′S2O
′ The Interference Pattern:The

Interference Pattern In Young’s Double slit Experiment is shown below:-
Key points about the Interference Pattern in Young’s Double slit Experiment
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Figure 17: Photograph and the graph of the intensity

• The fringe width β remains the same for all bands.

• The intensity also remains the same for all bands.

DIFFRACTION
The divergence of light from its initial line of travel is called diffraction.When plane light waves
pass through a small aperture in an opaque barrier, the aperture acts as if it were a point source
of light, with waves entering the shadow region behind the barrier. This phenomenon,
known as diffraction, can be described only with a wave model for light.

Figure 18: Diffraction through a single slit -Diffraction effects are pronounced when λ >> d

If the wave meets a barrier in which there is a circular opening whose diameter is much larger
than the wavelength, as in Figure 18a, the wave emerging from the opening continues to move in
a straight line (apart from some small edge effects); hence,the ray approximation is valid. If the
diameter of the opening is on the order of the wavelength, as in Figure 18 b, the waves spread out
from the opening in all directions.This effect is called diffraction. Finally, if the opening is much
smaller than the wavelength, the opening can be approximated as a point source of waves (Fig.18
c)(Similar effects are seen when waves encounter an opaque object of dimension d, where d << λ)
SINGLE SLIT DIFFRACTION
Consider a light passing through a narrow opening modeled as a slit, and projected onto a screen.
To simplify our analysis, we assume that the observing screen is far from the slit, so that the rays
reaching the screen are approximately parallel.( This can also be achieved experimentally by using
a converging lens to focus the parallel rays on a nearby screen.)
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By examining waves coming from various portions of the slit, as shown in Figure19 We can
deduce some important features of Diffraction.

Figure 19: Paths of light rays that encounter a narrow slit of width a and diffract toward a screen
in the direction described by angle θ. Each portion of the slit acts as a point source of light waves.
The path difference between rays 1 and 3, rays 2 and 4, or rays 3 and 5 is (a/2)sinθ.

According to Huygens principle , each portion of the slit acts as a source of light waves.
Hence, light from one portion of the slit can interfere with light from another portion, and the
resultant light intensity on a viewing screen depends on the direction θ.Thus a diffraction pattern
is actually an interference pattern, in which the different sources of light are different portions of
the single slit!
Formation of Dark Bands-Analysis: Divide the slit into two halves,as shown in Figure 19.
Keeping in mind that all the waves are in phase as they leave the slit.

The point P on the screen will be dark when the waves corresponding to 1 and 3,2 and 4 or 3
and 5 in Fig.19 interfere at the point P.The reasons are given below:-

• Consider rays 1(lower half) and 3(upper half). As these two rays travel toward a viewing
screen far to the right of the figure, ray 1 travels farther than ray 3 by an amount equal to
the path difference (a/2)sinθ, where a is the width of the slit.

• Similarly, the path difference between rays 2(lower half) and 4(upper half) is also (a/2)sinθ,
as is that between rays 3(upper half) and 5 (lower half). If this path difference is exactly half
a wavelength (corresponding to a phase difference of 180o),then the two waves cancel each
other and destructive interference results. If this is true for two such rays, then it is true
for any two rays that originate at points separated by half the slit width because the phase
difference between two such points is 180.

• Therefore,when waves from the upper half of the slit interfere destructively with waves from
the lower half then the interfere destructively and a dark band results.
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Dark bands are formed when the phase difference of 180o or when the path difference is ±λ
2

a

2
sin θ = ±λ

2
= a sin θ = ±λ (24)

Applying the same analysis consider the slit to be divided into four parts as shown below in fig.20
if the path difference a

4
sin θ is ±λ

2
then the phase difference is 180o hence destructive interference

Figure 20: Single slit divide into four parts

takes place and the point P is dark

a

4
sin θ = ±λ

2
⇒ a sin θ = ±2λ

And if the slit is divided into six equal parts and applying similar analysis

a sin θ = ±3λ

Condition for Dark bands:
Therefore, the general condition for dark bands is

a sin θn = ±nλ, n = 1, 2, 3...(note 0 is not included) (25)

Formation of Bright Bands-Analysis: Divide the slit into 3 equal parts ,as shown in Figure 19.
Keeping in mind that all the waves are in phase as they leave the slit. If we take the first two thirds
of the slit, the path difference between the rays corresponding to wavelets from the firs one third
and the second one third would be a

3
sin θ and if this path difference is λ

2
then the phase difference

between wavelets from the first and the second one third will be 1800 and will cancel each other
destructively,hence only the last one third will remain which will contribute to the brightness at P .

a

3
sin θ =

λ

2
⇒ a sin θ =

3λ

2
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Figure 21: first bright band

This is the first maxima
Similarly Divide the slit into 5 equal parts If we take the first one fifth of the slit, the path
difference between the rays corresponding to wavelets from the first one fifth and the second
one fifth would be a

5
sin θ and if this path difference is λ

2
then the phase difference between wavelets

from the first and the second one fifth will be 1800 and will cancel each other destructively,Similarly
the third one fifth and the fourth one fifth will cancel destructively hence only the last one
fifth will remain which will contribute to the brightness at P .

a

5
sin θ =

λ

2
⇒ a sin θ =

5λ

2

This is the 2 maxima
Condition for Dark band: Therefore, the general condition for bright bands is

a sin θn = ±(n+
1

2
)λ, n = 1, 2, 3...(note 0 is not included) (26)
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Angular width of the central Maxima of a Diffraction pattern

Figure 22: Intensity distribution for a diffraction pattern from a single slit of width a. The positions
of two minima on each side of the central maximum are labeled.

The figure above shows the diffraction pattern of a single slit.The central maxima extends up to y1
(the distance from the first minima) on both sides of o,hence the width of the central maxima is
given by

βo = 2y1 (27)

Using the condition for dark bands and the small angle approximation we get

a sin θ1 ≈ aθ1 = λ (n = 1) or θ1 =
λ

a
(28)

from the diagram

tan θ1 = θ1 =
y1
D

(29)

equating eqns.(28) and (29) we can get y1 as

y1 =
Dλ

a
(30)

using y1 in (27) we get

β0 = 2y1 = 2
Dλ

a
(31)

NOTE: All the other dark and bright bands are of widths

β =
Dλ

a

Why the intensity of Bright bands progressively reduce
For the first maxima two-thirds of the slit can therefore be divided into two halves which have a
λ/2 path difference. The contributions of these two halves cancel in the same manner as described
earlier. Only the remaining one-third of the slit contributes to the intensity at a point between the
two minima. Clearly, this will be much weaker than the central maximum (where the entire slit
contributes in phase). One can similarly show that there are maxima at (n + 1/2)θ/a with n = 2,
3, etc. These become weaker with increasing n, since only one-fifth, one-seventh, etc., of the slit
contributes in these cases.
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Difference between Interference pattern and diffraction pattern

• Interference Pattern:

Figure 23: Interference pattern-Note the intensities of the bands are uniform

• Diffraction Pattern:

Figure 24: Single slit diffraction pattern-note the intensities decrease with order

• Interference:The interference pattern has a number of equally spaced bright and dark bands.

• Diffraction:The diffraction pattern has a central bright maximum which is twice as wide as
the other maxima.

• Interference:The intensities of the bands are uniform.

• Diffraction:The intensity falls as we go to successive maxima away from the centre, on either
side.

• Interference: interference pattern is the superposition of two waves originating from the two
narrow slits.

• Diffraction:The diffraction pattern is a superposition of a continuous family of waves origi-
nating from each point on a single slit.

• Interference:For interference, the condition for Bright bands is

Path Difference = nλ n = 0, 1, 2, 3, 4....

and for dark bands the condition is

Path Difference = (2n+ 1)
λ

2
n = 0, 1, 2, 3, 4....
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• Diffraction:For Diffraction, the condition for Bright bands is

Path Difference = a sin θn = ±(n+
1

2
)λ, n = 1, 2, 3...(note 0 is not included)

and the condition for Dark bands is

a sin θn = ±nλ, n = 1, 2, 3...(note 0 is not included)

Conservation of Energy and interference/diffraction:In interference and diffraction, light
energy is redistributed. If it reduces in one region, producing a dark fringe, it increases in another
region, producing a bright fringe. There is no gain or loss of energy,which is consistent with the
principle of conservation of energy.
Resolving power of optical instruments:The ability of an optical instrument to distinctly
separate two closely lying objects is called resolution.
How diffraction affects Optical Instruments:Consider a parallel beam of light falling on a
convex lens. If the lens is well corrected for aberrations, then geometrical optics tells us that the
beam will get focused to a point. However, because of diffraction, the beam instead of getting
focused to a point gets focused to a spot of finite area. In this case the effects due to diffraction
have to be be taken into account by considering a plane wave incident on a circular aperture followed
by a convex lens (Fig.25 ).

Figure 25: A parallel beam of light is incident on a convex lens. Because of diffraction effects, the
beam gets focused to a spot of radius ≈ 0.61fλ/a

Taking into account the effects due to diffraction, the pattern on the focal plane would consist
of a central bright region surrounded by concentric dark and bright rings (Fig.25).The radius of the
central bright region is approximately given by

ro ≈
0.61λf

a
(32)

Due to this circular patch the image of two objects being viewed by an optical instrument merge
together and the instruments ability to distinctly separate the images is affected.
Resolving power of a Microscope:The resolving power of the microscope is given by the recip-
rocal of the minimum separation(dmin) of two points seen as distinct.
Derivation of the resolving power of a Microscope: From fig.26 shown below

tan β =
D

2f
(33)

we know that
m ≈ v

f
(34)

using the expression for ro from (32) we get

2r0 ≈
1.22fλ

D
(35)
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Figure 26: Real image formed by the objective lens of the microscope.

using (34) in (35) we get

2r0 ≈
1.22vλ

mD
(36)

This (2r0) is the minimum distance(dmin) between two objects so that they can be clearly seen seen
as to objects(else they merge) thus

dmin =
1.22vλ

mD
(37)

The above equation shows clearly that the λ affects the resolution inversely.
dmin in terms of β:-
Using eqn.(33)in (35)we get

dmin =
1.22λ

2 tan β
(38)

using the small angle approximation tan β ≈ sin β we get

dmin =
1.22λ

2 sin β
(39)

If the medium between the object and the objective lens is not air but a medium of refractive
index n, Eq.(39) gets modified to

dmin =
1.22λ

2n sin β
(40)

The product nsinβ is called the numerical aperture.
KEY POINTS ABOUT THE RESOLUTION OF MICROSCOPE

• The resolution will be better if we use smaller wave lengths like UV or electron micro-
scope(electrons also behave like waves)

• Magnification comes at the cost of resolution.

• If the refractive index of the medium between the objective and the lens can be increased as
in oil immersion microscope then the resolution will be better(ref.eqn.(40))

Resolution of Telescope The resolving power of a telescope can be defined as the
reciprocal of the smallest angular separation between two distant objects so that they
appear just separated when seen through a telescope.

The the resolution of a telescope is given by

∆θ =
1.22λ

D
(41)
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And resolving power is given by

resolving Power =
1

∆θ
=

D

1.22λ
(42)

Thus Larger the diameter of the telescope better the resolution. Ray optics and wave
optics-THE FERSNEL DISTANCE

Diffraction determines the limitations of the concept of light rays. A beam of width a travels
a distance ZF , called the Fresnel distance , before it starts to spread out(significantly) due to
diffraction. Fresnel Distance:The distance of the screen from the slit ,so that spreading of light
due to diffraction from the center of the screen is equal to the size of the slit is called Fresnel
distance(ZF)
Expression For ZF Consider a beam of light diffracted by an aperture (i.e., slit or hole) of size a
when the diffracted light travels a distance D then it acquires a width given by

y1 =
λD

a

From the definition of Fresnel distance(ZF )

D = ZF

when
y1 = a

substituting in the equation for y1 we get

a =
ZFλ

a

or

ZF =
a2

λ
(43)

Equation ((43)) shows that for distances much smaller than zF, the spreading due to diffraction is
smaller compared to the size of the beam. It becomes comparable when the distance is approxi-
mately ZF . For distances much greater than ZF , the spreading due to diffraction dominates over
that due to ray optics (i.e., the size a of the aperture).

• If the distance is less than the Fresnel distance(ZF) then ray optics is good
enough for distances more than ZF wave optics is to be used.

POLARISATION
Polarisation shows that light is a transverse wave

An ordinary beam of light consists of a large number of waves emitted by the atoms of the light
source. Each atom produces a wave having some particular orientation of the electric field vector E,
corresponding to the direction of atomic vibration. The direction of polarization of each individual
wave is defined to be the direction in which the electric field is vibrating.

Because all directions of vibration from a wave source are possible, the resultant electromagnetic
wave is a superposition of waves vibrating in many different directions. The result is an unpolar-
ized light beam, represented in Figure 27a. The direction of wave propagation in this figure is
perpendicular to the page. The arrows show a few possible directions of the electric field vectors
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Figure 27: (a) A representation of an unpolarized light beam viewed along the direction of prop-
agation (perpendicular to the page). The transverse electric field can vibrate in any direction in
the plane of the page with equal probability. (b) A plane polarized light beam with the electric field
vibrating in the vertical direction.

for the individual waves making up the resultant beam. At any given point and at some instant of
time, all these individual electric field vectors add to give one resultant electric field vector.

A wave is said to be plane polarized if the resultant electric field E vibrates in the same direction
at all times at a particular point, as shown in Figure 27b.
Demonstration of light is a transverse wave:Light waves are transverse in nature; i.e., the
electric field associated with a propagating light wave is always at right angles to the direction
of propagation of the wave. This can be easily demonstrated using a polaroid. A polaroid is
a plastic sheet coated with long chain molecules aligned in a particular direction. The electric
vectors (associated with the propagating light wave) along the direction of the aligned molecules
get absorbed.Thus, if an unpolarised light wave is incident on such a polaroid then the light wave
will get linearly polarised with the electric vector oscillating along a direction perpendicular to the
aligned molecules; this direction is known as the pass-axis of the polaroid.
MALUS LAW: The intensity of light which is transmitted through the analyser varies as follows:-

Figure 28: Malus Law

I = I0 cos2 θ (44)

Polarisation by scattering:Under the influence of the electric field of the incident wave the
electrons in the molecules acquire components of motion in both these directions. We have drawn
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Figure 29: Scattered light is polarised by particles in the athmosphere

an observer looking at 900 to the direction of the sun. Clearly, charges accelerating parallel to the
double arrows do not radiate energy toward’s this observer since their acceleration has no transverse
component. The radiation scattered by the molecule is therefore represented by dots. It is polarised
perpendicular to the plane of the figure. This explains the polarisation of scattered light from the
sky.

Polarisation by reflection-Brewsters Law:When an unpolarized light beam is reflected
from a surface, the reflected light may be completely polarized, partially polarized, or unpolarized,
depending on the angle of incidence. If the angle of incidence is 0, the reflected beam is unpolarized.
For other angles of incidence, the reflected light is polarized to some extent, and for one particular
angle of incidence, called the Brewsters angle(ip) the reflected light is completely polarized.

Consider unpolarised light incident on a reflecting surface light is completely polarised when the
angle between the reflected ray and the incident ray is 900 as shown below:- using Snell’s Law

Figure 30: The reflected beam is completely polarized when the angle of incidence equals the po-
larizing angle ip, which satisfies the equation n = tan ip . At this incident angle, the reflected and
refracted rays are perpendicular to each other.

sin ip
sin r

=
n2

n1

= n21
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from the diagram
ip + r + 90 = 180o hence

r = 90− ip
substituting in the Snell’s law we get

sin ip
sin(90− ip)

= tan ip = n21 (45)

This is called Brewsters Law .
Applications of Polarisation: (a) Sun glasses polarise light to cut glare., (b) It is used in 3D
movies.

-End-
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